太阳成集团(tyc122cc-VIP)官网-Sun Group

【廿周年院庆·和山数学论坛第396期】中佛罗里达大学孙颀彧教授学术报告​

信息来源:   点击次数:  发布时间:2023-12-20


【廿周年院庆学术报告119 · 【和山数学论坛第396期】

 

一、报告题目:Barron Space for Graph Convolution Neural Networks

二、报告人:孙颀彧 教授

三、时 间: 20231222 (星期) 15:00—16:00

四、地  点:闻理园A4-309


报告摘要Graph convolutional neural network  (GCNN) operates on graph domain and it has  achieved a superior performance to accomplish a wide range of tasks. In this talk, we introduce a Barron space of functions on a compact domain of graph signals, discuss its various properties, such as reproducing kernel Banach space property and universal approximation property. We will also discuss well approximation property of functions in the Barron space by outputs of some GCNNs, and learnability of functions in the Barron space from their random samples.

 

报告人简介:孙颀彧教授中佛罗里达大学主要从事傅里叶分析、小波分析、框架理论、信号采样和处理等方面的研究工作.在国际顶尖权威杂志 Memoirs of American Mathematical Society, Transactionof American Mathematical Society, Applied and Computational Harmonic Analysis, Advancesin Computational Mathematic, IEEE Transaction on Information Theory, IEEETransaction on Signal Processing, Journal of Fourier Analysis and Applications等发表论文100多篇.担任Frontiers in Applied Mathematics and Statistics, Sampling Theory in Signal and Imaging Processing, Numerical Functional Analysisand Optimization, Advances in Computational Mathematics等期刊的编委孙教授发表学术论文160多篇文章引用率3000多次


欢迎感兴趣的老师和同学参加!联系人:房启全