一、报告题目:Rigidity Theorems for Invariant Harmonic Functions and Harmonic Maps
二、报告人:美国加州大学尔湾分校Song-Ying Li(李松鹰) 教授
三、时 间:2016年12月14日下午2:30---3:20
四、地 点:闻理园A4-214室
报告摘要:
I will talk about the recent development on the rigidity theorems on invariant harmonic functions and harmonic maps. One of the most recent works is jointly with Renyu Chen from Tian Jin University, we prove that invariant harmonic functions will become pluriharmonicity under certain smooth up to boundary condition on the classical bounded symmetric domains in C^n. These theorems generalize a well known theorem of R. Graham from the unit ball in C^n. I will also connect these to harmonic maps and Sius' supper rigidity theorem.
个人介绍:
李松鹰教授,于1985年6月在福建师范大学数学系获硕士学位, 于1992年6月在美国匹兹堡大学(University of Pittsburgh)数学系获博士;现为美国加州大学欧文分校正教授, 2005年5月被聘为闽江学者,福建师范大学讲座教授.
李松鹰教授,主要研究领域是复分析、非线性偏微分方程,调和分析及复几何。在Amer. J. Math, Math. Z., Math. Ann.,J. Funct. Anal., Michigan Math. J., J. London Math. Soc., Pacific J. Math.等国际权威数学刊物上发表论文数十篇。
李松鹰教授主页: http://www.math.uci.edu/~sli/
欢迎广大师生参加!
太阳成集团tyc122cc
复分析研究团队
应用数学研究所